Part Number Hot Search : 
BR202 X9241UV X9241UV 1N4907E3 MX23L STP20N 74HC404 YB1685
Product Description
Full Text Search
 

To Download GA150KS61U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -94346
GA150KS61U
IGBT INT-A-PAK
Features
* Generation 4 IGBT technology * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
3 1 6 7
Low Side Switch Chopper Module Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.7V
2
@VGE = 15V, IC = 150A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current Peak Switching Current Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 150 300 300 300 20 2500 440 230 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3 Weight of Module
Typ.
-- -- 0.1 -- -- 200
Max.
0.28 0.35 -- 4.0 3.0 --
Units
C/W N. m g
www.irf.com
1
11/06/01
GA150KS61U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 -- -- VGE = 0V, IC = 1mA -- 1.7 2.3 VGE = 15V, IC = 150A -- 1.7 -- V VGE = 15V, IC = 150A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 750A Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = V GE, IC = 750A Forward Transconductance -- 152 -- S VCE = 25V, I C = 150A Collector-to-Emitter Leaking Current -- -- 1.0 mA VGE = 0V, VCE = 600V -- -- 10 VGE = 0V, VCE = 600V, TJ = 125C Diode Forward Voltage - Maximum -- 1.4 2.0 V IF = 150A, VGE = 0V -- 1.4 -- IF = 150A, VGE = 0V, TJ = 125C Gate-to-Emitter Leakage Current -- -- 250 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 624 121 212 241 145 336 227 6.0 12 19 13878 867 181 139 100 6938 4682 Max. Units Conditions 937 VCC = 400V 182 nC IC = 94A 317 TJ = 25C -- RG1 = 27, RG2 = 0, -- ns IC = 150A -- VCC = 360V -- VGE = 15V -- mJ -- 33 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 150A -- A RG1 = 27 -- nC RG2 = 0 -- A/s VCC = 360V di/dt =1400A/s
2
www.irf.com
GA150KS61U
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 25 o C TJ = 125 o C
100
T = 125 o C J
100
TJ = 25 oC
10
10 1 2
V GE = 15V 20s PULSE WIDTH
3
1
25V VVCE = 25V CC 50V 5s PULSE WIDTH 80s PULSE WIDTH
5
6
7
8
9
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 1 - Typical Output Characteristics
Fig. 2 - Typical Transfer Characteristics
160
3.0
120
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current(A)
IC = 300 A
80
2.0
IC = 150 A
40
IC = 75 A
0
25
50
75
100
125
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 3 - Maximum Collector Current vs. Case Temperature
Fig. 4 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
www.irf.com
3
GA150KS61U
25000
VGE , Gate-to-Emitter Voltage (V)
20000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 94A
16
C, Capacitance (pF)
Cies
15000
12
10000
8
Coes
5000
Cres
4
0 1 10 100
0 0 100 200 300 400 500 600 700
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 5 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1
Thermal Impedance - Z
thJC
D = 0.50
0.1
0.20 0.10 0.05 0.02 0.01 Single Pulse (Thermal Resistance)
P DM
t 1 t2
N otes: 1. Duty factor D = t1 / t 2 2. Peak T = PD x Z thJC + TC M J
0.01 0.0001
0.001
0.01
0.1
1
10
100
1000
t 1 , Rectangular Pulse Duration (Seconds)
Fig. 7 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA150KS61U
30 VCC = 360V VGE = 15V TJ = 125C 25 I C = 1500A
100 IC = 300A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
IC = 150A IC = 75A
20
10
15
RG1 = 27, RG2 = 0 VGE = 15V VCC = 360V 1
10 0 10 20 30 40 50
0
20
40
60
80
100
120
140
160
RG, Gate Resistance ()
T J, Junction Temperature (C)
Fig. 8 - Typical Switching Losses vs. Gate Resistance
Fig. 9 - Typical Switching Losses vs. Junction Temperature
50
400
Total Switching Losses (mJ)
40
VGE = 15V VCC = 360V
IC, Collector-to-Emitter Current (A)
RG1 = 27, R = 0 G2 TJ = 150C
VGE = 20V T J = 125 VCE measured at terminal (Peak Voltage)
300
30
200
20
SAFE OPERATING AREA 100
10
0 0 50 100 150 200 250 300
0 0 100 200 300 400 500 600 700
IC, Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 10 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 11 - Reverse Bias SOA
www.irf.com
5
GA150KS61U
300
200 160
IF = 300A
200
IF = 300A
IRRM - (A)
IF = 150A
120
trr - (ns)
IF = 150A IF = 75A
IF = 75A
80
100
VR = 360V TJ = 125C TJ = 25C 0 500 1000 1500 2000
40 VR = 360V TJ = 125C TJ = 25C 0 500 1000 1500 2000
dif / dt - (A / s)
dif / dt - (A / s)
Fig. 12 - Typical Reverse Recovery vs. dif/dt
1000
Fig. 13 - Typical Recovery Current vs. dif/dt
14000
Instantaneous Forward Current - I F ( A )
12000
IF = 300A IF = 150A IF = 75A
10000
100
Qrr - (nC)
8000
6000
T J = 125C T J = 25C
4000
2000
VR = 360V TJ = 125C TJ = 25C
10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0 500 1000 1500 2000
Forward Voltage Drop - V F ( V )
dif / dt - (A / s)
Fig. 14 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 15 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA150KS61U
L2 L1 DUT
Vce
L
+Vge
90% Vge
Vcc +Vg2
Rg2
Ic 10% Vce Ic 5% Ic td(off) tf 90% Ic
-Vg2
Rg1
L3 Vcc=60% of BVces Ls= L1+L2+L3 Vge=15V
Eoff =
t1+5S Vce Ic Vce ic dtdt
t1
Fig. 16a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 16b - Test Waveforms for Circuit of Fig. 16a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
trr Ic
Qrr =
trr id dt Ic dt tx
tx 10% Vcc Vce 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk Ic
10% Irr Vcc
Vpk Irr
Vcc
DIODE RECOVERY WAVEFORMS td(on) tr 5% Vce t2 Vce Ic Eon = Vce ie dt dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd idIc dt Vd dt t3
t1
t4
Fig. 16c - Test Waveforms for Circuit of Fig. 16a,
Defining Eon, td(on), tr
Fig. 16d - Test Waveforms for Circuit of Fig. 16a
Defining Erec, trr, Qrr, Irr
www.irf.com
7
GA150KS61U
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 16e. Macro Waveforms for Figure 17's Test Circuit
RL = 0 - 480V
480V 4 X I C @25C
Figure 17. Pulsed Collector Current Test Circuit
8
www.irf.com
GA150KS61U
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
See fig. 16 For screws M5x0.8 Pulse width 80s; single shot.
Case Outline -- INT-A-PAK
94.70 3.728 93.70 3.689] 80.30 79.70
[
NOT ES : 1. ALL DIMENSIONS ARE S HOWN IN MILLIMETERS [INCHES ]. 2. CONTROLLING DIMENS ION: MILLIMETER. 4.50 3.50 6 7 17.50 16.50 .650] [.689 .138] [.177
[
3.161 3.138
]
2X 23.50 22.50 .886] [.925
11 10 34.70 33.70 1.327] [1.366 1 8 9 2 3
5 4
6.80 2X O 6.20
.244] [.267 4X F AS TON TAB (110) 2.8 x 0.5 [.110 x .020]
3X M5 8 [.314] MAX.
42.00 41.00
1.614] [1.654
8.00 6.60
.260] [.315
24.00 23.00
.906] [.945
30.50 29.00
1.142 [1.201 ]
0.15 [.0059] CONVEX 92.10 91.10 3.587] [3.626
8.65 7.65
.301 [.341 ] 32.00 31.00
2X 13.30 12.70
.500] [.524
[
1.260 1.220]
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/01
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of GA150KS61U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X